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This paper presents and exemplifies a novel methodology to perform simulation-based automated 
testing  for  verification  of  complex  chassis-control  systems.  The  methods  are  derived  from 
computer-game principles and regard the system under test as an opponent that is defeated when 
the specification is violated. The methodology is demonstrated on an auto-coding implementation 
of  a  brake-blending  function  for  a  heavy  vehicle,  in  combination  with  a  simulation  model 
implemented  in  Modelica.  It  is  shown that  a  vast  number  of  scenarios  can be analyzed  with 
moderate manual effort, and that results corresponding to high-coverage FMEA / FTA analysis 
can be produced to verify system safety and robust performance.
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1. INTRODUCTION

New chassis  control  functions  add to  the  safety  and 
comfort  of road vehicles  and provide the customers with 
great value. However, the complexity of the heterogeneous 
and  distributed  total  control  system  that  is  the  result  of 
many control functions that operates in parallel and share 
sensors and actuators is continuously increasing. Methods 
are needed to cope with this complexity to guarantee safe 
and reliable performance at a reasonable cost.

Traditional  control-design  methods  focus  on  robust 
performance and stability in terms of model uncertainty and 
disturbances  in  closed-loop  systems.  For  the  complex 
aggregate  of  vehicle  control  functions,  the  traditional 
methods  can  only  be  applicable  on  subsets  of  the  total 
system, and must be combined with other methods in order 
to analyze global robust and safe performance with respect 
to  the  system  design  and  possible  faults.  The  complete 
system  is  of  such  complexity  that  formal  proof-based 
verification of the design is practically impossible. Instead, 
the system must be subjected to verification testing with a 
sufficient  coverage  to  yield  confidence  in  safety  and 
availability. Likewise, the analysis of system performance 
under possible fault scenarios must be analyzed by testing 
rather than proof. 

The verification testing involves the analysis of a vast 
number  of  scenarios  selected  in  a  systematic  way.  This 
work  is  commonly  done  manually  to  a  large  extent  in 
design  revisions,  hardware-in-the-loop  (HIL)  rigs,  and 

prototype  testing.  The  manual  involvement  is  time-
consuming  and  limits  the  number  of  cases  that  can  be 
investigated and tested, and the verification process is also 
very costly. There are great improvements in efficiency and 
coverage  to  be  gained  from  further  automating  these 
procedures.  The  human  intervention  is  also  a  source  of 
error that may be reduced by automation. Another issue is 
that verification testing usually is applied at later phases in 
the design process, and problems that are identified in these 
tests  may  require  large  and  expensive  steps  back. 
Verification testing based on models or software may be 
applied  at  earlier  phases  and  problems  may  thus  be 
identified earlier.

The combination of a tool that automatically produces 
relevant test cases by intelligent search in the configuration 
space and model-in-the-loop (MIL) or software-in-the-loop 
(SIL) simulation is demonstrated in this paper. In Section 2, 
the  tool  and  method  for  automated  testing  is  described. 
Section 3 describes a brake-blending function implemented 
for  auto-coding  that  is  subject  for  verification  testing. 
Section 4 describes the vehicle and environment simulation 
model. In Section 5, the tool used here to setup and perform 
MIL/SIL simulations is described. Section 6 presents and 
summarizes  the  results,  and  conclusions  are  given  in 
Section 7.
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2. THE AUTOMATED TEST ENVIRONMENT 

Complex vehicle systems, like the one described in this 
paper, are difficult to test and validate. Traditional methods 
based  on  hand-written  test  scripts  do  not  scale  anymore 
with  increasing system complexity.  TestWeaver  is  a  tool 
that  implements  a  novel  method  for  the  automated 
generation  and  evaluation  of  tests  for  complex  dynamic 
systems. 

The overall design objectives for TestWeaver were to:

1. dramatically increase the test coverage, with respect to 
system behavior, while

2. keeping the workload for the test engineer low.

Figure 1. The test environment.

TestWeaver  can autonomously generate  and evaluate 
thousands  of  qualitatively  differing  simulation  runs,  see 
Figure 1. No handwritten test scripts are needed for that. 
The interaction with the simulated system under test is done 
via a typically small set of instrumentation components that 
are  placed  in  the  simulation  model.  These  instruments 
allow TestWeaver  to  remotely control  the  system's  input 
signals  and  parameters  and  to  monitor  selected  state 
variables.  Instrumentation  libraries  exist  for  Simulink, 
Modelica,  C  and  for  Silver  co-simulations.  The 
instrumentation  is  system-dependent,  but  the  search 
algorithms implemented by TestWeaver are generic. Part of 
the instrumentation can monitor system safety and quality 
conditions  and  can  report  alarms  to  TestWeaver  when 
certain safety requirements or specification are violated, or 
are nearly so.

TestWeaver  systematically  generates  thousands  of 
differing simulation scenarios. For this purpose TestWeaver 
analyses  the  results  of  the  past  simulations  in  order  to 
intelligently (a) search for violations of specifications and 
to (b) maximize the test coverage. Test coverage is defined 
as  follows:  the  domain  of  each  variable  controlled  or 
monitored by a TestWeaver instrument is partionend into a 
small  set  of  intervals  by  that  instrument.  This  way,  the 
instruments  of  a  model  define  an  n-dimensional  discrete 
(i.e. finite) state space. The coverage goal of TestWeaver is 
to reach every reachable discrete state in that space at least 

once, see Figure 2.

 
Figure 2 Scenarios generated by TestWeaver. 

All  recorded  simulation  runs  can  be  “replayed”  for 
detailed analysis and debugging.

To provide intuitive feedback to the user about critical 
scenarios found and what portion of the search space was 
covered, TestWeaver contains a sophisticated, customizable 
reporter component. This allows the user to focus on a few 
potentially interesting scenarios, instead of shifting through 
thousands or even tens of thousands of mostly uninteresting 
simulation runs.

3. VEHICLE FUNCTION – BRAKE BLENDING 

The large mass of heavy-vehicle combinations such as 
tractors with semi-trailers implies that large braking power 
is required for retardation. This leads to a risk for very high 
temperatures in the service brakes as well as unnecessary 
disk  and  pad  wear.  Normal  engine  braking  is  unable  to 
provide sufficient retardation torque to support the service 
brakes. Therefore, heavy vehicles are often equipped with 
auxiliary brakes such as retarders and special engine brakes 
(e.g. exhaust brakes). 

These  retarders  can  be  controlled  manually  or 
automatically  with  brake  blending.  Brake  blending  is  a 
feature where the service brakes and auxiliary brakes are 
seamlessly blended in such a way that the service brakes 
are relieved while the actual retardation corresponds to the 
driver  brake  pedal  requests.  The  function  shall  not  be 
noticeable for the driver,  i.e. when the driver presses the 
deceleration pedal, the deceleration response of the vehicle 
shall be identical whether brake blending is active or not.

The  brake  blending  system  consists  of  a  reference 
generator  for  the  brake  forces,  a  coordinator  for  all  the 
brake  systems,  a  retarder  torque  controller  and  a  brake 
torque controller. See further the control scheme in Figure
3. The function is implemented in Simulink/Targetlink for 
automatic generation of production code. 

The brake blending function is in an early development 
phase and this is the first safety and robustness assessment. 
Not all needed countermeasures are implemented yet. The 
function is, however, auto-coded and integrated in an ECU. 
It is tested in prototypes as well as in simulations. 
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Figure 3. Schematic control diagram for Brake Blending. Only the main control flow is shown. 

The brake pedal position, pos, is interpreted as a brake 
force,  F,  on  the  whole  combination  by  the  Brake  Force 
Reference  Generator.  The  Brake  Force  Coordinator 
distributes  (the  actual  blending)  the  force  between  the 
different types of actuators,  F_aux to the auxiliary brakes 
and  F_brakes to  the  service  brakes.  The  Auxiliary  Brake 
Torque Controller controls the engine torque,  T_eng,  and 
the retarder torque,  T_ret while the  Service Brake Torque 
Controller controls the service brake torques, T_brakes and 
the trailer pressure, p_trailer. 

The  engine  retarder  is  only  possible  co control  in  a 
number of  fixed steps  and the achieved torque has great 
engine speed dependency. The dynamics vary heavily with 
engine  speed,  and  the  resulting  braking  torque  on  the 
wheels also depends on the engaged transmission gear. The 
driveline  retarder  can be controlled continuously,  and its 
dynamics vary with the prop shaft speed. To have a smooth 
control of the retardation, the brake blending function must 
include compensations for these aspects. 

However,  as  the  brake  blending  function  prioritizes 
auxiliary brakes and the auxiliary brakes are braking only 
the drive axle, there is a risk for excessive slip on that axle, 
and thus reduced vehicle stability as a consequence. As a 
means for avoiding that, a slip control for the rear axle is 
needed.  If  the rear axle  has too high slip,  brake force is 
moved  to  the  front  axle.  Therefore,  brake  blending  is  a 
relatively complex function.

Now, to make sure that the brake blending function is 
safe and robust, two studies are made in TestWeaver:
• A fault injection and
• A parameter variation robustness study

The  analysis  is  made  on  a  system  configured  for  a 
vehicle with a compression and exhaust retarder as a part of 
the engine and a hydrodynamic driveline retarder mounted 
between the gear box and the final gear. In this study the 
analysis is limited to a single tractor, without trailer

Hazards
Hazard identification and classification is an important 

and difficult task. As a lot of proprietary knowledge about a 
function is documented in this classification, only a small 
portion of the hazard list can be published here. To give an 
example of what is possible with the tool chain presented 

here,  we  just  give  one  example  of  one  type  of  hazards, 
namely retardation deviations. 

Function Hazard Identification and Classification – Brake Blending

ID Description Expression C
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SIL
BB_H_004 The retardation is slightly lower than intended for a long time. delta_r < -0.5 m/s2

time > 1 s
BB_H_005 The retardation is lower than intended for a long time. delta_r < -1.0 m/s2

time > 1 s
BB_H_006 The retardation is much lower than intended for a long time. delta_r < -2.0 m/s2

time > 1 s
BB_H_007 The retardation is slightly higher than intended for a long time. delta_r > 0.5 m/s2

time > 1 s
BB_H_008 The retardation is higher than intended for a long time. delta_r > 1.0 m/s2

time > 1 s
BB_H_009 The retardation is much higher than intended for a long time. delta_r > 2.0 m/s2

time > 1 s

Signals and Parameters
Inputs  and  parameter  values  are  partitioned  into 

intervals  that  are  classified  as  nominal,  tolerance 
deviations,  or faults. The faults  injected in this study are 
described  as  offset  or  gain  variations  on  signals  in  the 
function interface. See examples in the tables below.

Interface Signals
Name Unit Scaling
Vehicle to Control Function
Engine Retarder Actual Torque Nm [0, 0.5, 1, 1.5, 2]
Driveline Retarder Actual Torque Nm [0, 0.5, 1, 1.5, 2]
Vehicle Wheel Angular Velocities (x4) rad/s [0, 0.5, 1, 1.5, 2]
Engine Speed rad/s [0.5, 1, 1.5]
Rear Axle Wheight (air spring pressure sensors) kg [0, 0.5, 1, 1.5, 2]
Vehicle Longitudinal Acceleration m/s2 [0, 0.5, 1, 1.5, 2]
Control Function to Vehicle
Brake Clamp Forces (x4) N [0, 0.5, 1, 1.5, 2]
Engine Retarder Requested Torque Nm [0, 0.5, 1, 1.5, 2]
Driveline Retarder Requested Torque Nm [0, 0.5, 1, 1.5, 2]
Engine Retarder Torque Mode (valid request) - [0 1]
Driveline Retarder Torque Mode (valid request) - [0 1]

Internal Vehicle Signals
Name Unit Scaling
Engine Retarder Actuated Torque Nm [0, 0.5, 1, 1.5, 2]
Driveline Retarder Actuated Torque Nm [0, 0.5, 1, 1.5, 2]

Parameters
Name Unit Scaling
Front Tire Longitudinal and Cornering Stiffness N [0.5, 1, 1.5, 2]
Rear Tire Longitudinal and Cornering Stiffness N [0.5, 1, 1.5, 2]
Wheel Base m [0.5, 1, 1.5]
Front Axle Load kg [0.5, 1, 1.5]
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Test Scenario
The test consists of a driver that brakes and steers the 

vehicle.  Gear  shifting  is  made automatically.  The  Driver 
can give inputs according to the table below.

Drivers
Name Unit Values
Brake Pedal Position (0 to 1) - [0, 0.15, 0.3, 0.45]
Steering Wheel Angle rad [0, 0.5]

4. VEHICLE MODEL

To  test  and  verify  the  brake-blending  function  it  is 
necessary to simulate its operating environment including 
the  tractor  towing-vehicle,  a  driver,  and  the  road.  This 
environment must produce realistic responses to the control 
actions computed by the function. For this purpose a model 
is  built  using  the  Modelica-based   tools  Dymola   and 
Vehicle Dynamics  Library  ,   and  .  Modelica is an open-
specification  high-level  object-oriented  and  component-
based  language  designed  for  multi-domain  modeling  for 
simulation of complex systems.  Modelica is designed for 
acausal  and  equation  based  modeling,  which  makes  the 
models  highly  readable  and  reusable.  An  outstanding 
feature  of  Modelica-based  solutions  in  the  context  of 
verification  testing  is  the  exposed  and modifiable  model 
source  code  in  combination  with  the  high-level  model 
descriptions. It is possible to view and modify or extend the 
implementation of component and system models. In this 
way instruments can be added to the vehicle model, such as 
sensor instruments for criteria evaluation, and instruments 
for  input  excitation  and  parameter  variations  to  describe 
operating  conditions,  tolerance  variations,  and  fault 

injection.  Figure 5 shows the tractor model and the main 
powertrain,  brakes,  and  chassis  subsystems,  and  the 
instruments  used  by  TestWeaver.  The  powertrain  model 
includes a gearbox, engine retarder, driveline retarder, and 
driveline  with  final  gear  and  differential.  The  brake 
subsystem  includes  components  for  service  disk-brakes 
with ABS. The chassis contains front and rear axles, with 
steering, cabin, frame, and wheels. The vehicle runs on an 
infinite  plane  with  configurable  inclination  and  surface 
friction.  The  model  contains  about  seven  thousand 
equations and 63 continuous states. It is translated into C-
code using the Dymola inline trapezoid integration feature 
for generation of efficient real-time simulation code. It is 
then compiled and linked into a DLL to be used with Silver 
and  TestWeaver.  The  final  model  simulates  in  about 
realtime with 5ms time steps on a standard  pc.  Figure  4 
shows the tractor in a heavy braking maneuver.

Figure 4. Animation screenshot of a heavy braking 
maneuver.

vehicle

chassis

brakespowertrain

Figure 5. Vehicle model with powertrain, brakes, and chassis subsystems and TestWeaver instruments.
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5. VIRTUAL VEHICLE INTEGRATION

For  a  precise  and  flexible  simulation  of  system-
level behavior we chose a virtual  integration platform 
based  on  Software-in-the-Loop  (SIL).  The  vehicle 
software  functions  and  the  simulation  of  the  vehicle 
dynamics  can  be  integrated  by  co-simulation  on 
standard PCs. The simulation is fast due to the use of 
compiled modules (DLLs) for the (i) vehicle functions, 
exported with RealTime Workshop from Simulink, and 
for the (ii) vehicle dynamics simulation, exported from 
Modelica / Dymola. As integration tool Silver  was used 
here.  In  addition to  the basic  integration functionality 
already  mentioned,  Silver  offers  the  possibility  to 
parameterize  the  virtual  system  using  the  same 
standardized  interfaces  and  data  exchange  formats  as 
those used in cars, e.g. ASAP2 (A2L), XCP/CCP, DCM 
(ETAS), MDF (Vector).  For calibration tools,  such as 
Inka (ETAS) or Canape (Vector) the Silver simulation 
behaves  like  an  ECU.  Further  tools  are  provided  for 
controlling,  visualizing,  recording  and  debugging 
simulation runs in Silver, as well as a direct interface to 
the automatic test generation and evaluation tool used 
here:  TestWeaver.  Figure  6 depicts  the  virtual 
integration architecture used here.

Figure 6. The virtual vehicle integration architecture.

Instrumentation
Based  on  the  results  of  the  hazard  analysis 

described in Section 3, the instrumentation of the virtual 
vehicle  simulation  was  done.  The  instrumentation 
included  43  instruments:  one  alarm  for  hazard 
monitoring,  i.e. the retardation deviation,  2 inputs  for 
the brake pedal and for the steering angle, 8 parameters 
in  the  vehicle  dynamics  model  for  robustness  studies 
and  33  faults  for  the  events  surrounding  the  brake-
blending function, as described before.

6. RESULTS 

Using  the  instrumentation  and  the  vehicle  simulation 
TestWeaver  generates  many differing  simulation  runs 
and  can  build,  with  the  help  of  the  reporting 
functionality,  an  abstract  view  of  the  qualitative 
behavior of the vehicle. It  is then possible to find out 
which faults result in safety critical alarms, and under 
which  conditions  in  terms  of  parameter  settings  and 
input sequences. Moreover, it also possible to analyze 
different  aspects  of  coverage,  in  terms  of  input  and 
parameter  space  coverage,  fault  coverage  or  system 
state  coverage  –  of  course,  only  with  respect  to  the 
discretized  system  space  abstraction  provided  by  the 
instruments. 

When  a  fault  is  detected,  the  corresponding 
scenario can be replayed using the Silver environment 
to view details in the system response, see Figure 7.

With the control algorithm, simulation environment 
and  game-inspired  testing  algorithms,  the  potential 
hazard  causes  have  been  investigated  and  some 
previously  unforeseen  system  weaknesses  have  been 
revealed.  One major  result  is  that  critical  signals  and 
code  portions  are  effectively  identified.  Thus,  this 
primary  testing  result  points  out  the  countermeasures 
needed. Countermeasures are then implemented in the 
form of plausibility checks for the critical input signals 
and safety monitors for critical code portions. With the 
countermeasures implemented, succeeding test runs are 
made  in  order  to  verify  that  the  countermeasures  are 
effective.

Figure 7. Example of result from fault injection. The 
engine speed signal is for this fault injection half of the 

true engine speed.

The  presented  tool  chain  can  be  used  to  support 
safety  analysis  such  as  FMEA  /  FTA  as  well  as 
robustness and availability studies.

Safety Analysis
For the safety analysis, the fault injections are made 

on  the interface  signals  only.  The  vehicle  function is 
assumed to be monitored for code and numerical errors. 
In  order  to  be  able  to  study  a  reasonably  big  search 
space at the interface signals are discretized to certain 
gain values, as shown in section 3. 

A hazard analysis has been used here to derive the 
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monitored  safety  hazards  and  the  possible  faults  that 
could  be  related  to  them.  The  tool  chain  helped  to 
analyze,  in  detail,  the  cause-effect  relationship,  an 
otherwise  extremely difficult  enterprise,  if  possible  at 
all,  considering  the  complexity  and  the  amount  of 
software functions involved. Of course, the simulation 
results need to be evaluated and complemented by the 
analysis of experienced engineers. As a second step, the 
tool chain presented here can be used to verify that the 
countermeasures designed to improve system safety are 
successful.

Figure  8 shows  a  piece  of  a  coverage  report 
generated by TestWeaver, for analysis of the single fault 
events.

inserted faults BrkPdlPosCmd_Sh speed
no_brake (10..20)
little_brake (0..10)
some_brake (0..10)

(0..10)
(10..20)
(0..10)
(10..20)
(0..10)
(10..20)
(0..10)
(10..20)
(0..10)
(10..20)

… … …
(0..10)
(10..20)
(0..10)
(10..20)
(0..10)
(10..20)
(0..10)
(10..20)

DrvRetrdAct_Tq_gain=omission

much_brake

EngRetrdAct_Tq_gain=omission no_brake

little_brake

some_brake

much_brake

driveLineRetarderAxleTorqueShareMode=
omission

no_brake

little_brake

some_brake

much_brake

Figure 8. Subset of inserted faults (3 out of 33).

Most of the entire cross product of inserted faults, 
brake pedal positions and speeds are evaluated - only a 
few speed combinations are missing. The speed is not 
directly controlled, but a consequence of the brake pedal 
position.

Robustness Study
For  the  robustness  study,  the  effect  of  combined 

variations  of  vehicle  parameters,  road conditions,  and 
driver input sequence are investigated. The search space 
is  then of  course  enormous and it  is  implausible  that 
completeness can be achieved. Nevertheless, the major 
result is that often critical signals and parameters can be 
effectively identified. Thus, also this kind of study can 
reveal existing risks or robustness weaknesses, that need 
to be handled.

The  robustness  analysis  covered  8324  states  in 
1585 scenarios, and reported 6 alarms, see Figure 9. For 
each alarm it is possible to see what scenarios and input 
sequences that leads to the undesired state. The report 
gives all necessary information to judge the criticality of 
the condition. This is a great help to find and understand 
possible weaknesses and their remedies.

speed acceleration_error faults max 
duration scen

high (none) 0.74 s900
low (none) 3.16 s956
high (none) 0.61 s870
low (none) 2.84 s866
high (none) 0.01 s793
low (none) 0.42 s1021

(10..20)

(20..30)

(0..10)

Figure 9. Example of alarm report for the robustness 
study.

7. CONCLUSIONS 

For safety critical systems it is important to prove 
that the still existing risks are tolerable. Understanding 
and  assessing  software  is  difficult.  The  presented 
method can help increase the confidence in the system 
safety and helps the engineers to better understand the 
complex  behavior  of  systems  that  include  complex 
software. Our method complements the existing safety 
analysis and function validation methods with detailed 
and comprehensive analysis based on simulation.

The  presented  testing  method  reveals  the  safety 
critical signals and system portions in a very effective 
way and at an early stage. Required countermeasures in 
the form of plausibility checks and safety monitors are 
identified.  The  verification  of  the  implemented 
countermeasures  can  be  performed  with  succeeding 
tests.
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