
Simulation-Based Automated Verification of Safety-Critical
Chassis-Control Systems

Magnus Gäfvert† Johan Hultén† Johan Andreasson†

Andreas Junghanns‡ Jakob Mauss‡ Mugur Tatar‡

†Modelon AB
Ideon Science Park, SE-223 70 Lund, SWEDEN

 Phone: +46 46 2862200
 Fax: +46 46 2862201

 E-mail: {magnus.gafvert, johan.andreasson,
johan.hulten}@modelon.se

‡QTronic GmbH
Alt-Moabit 91d, D-10559 Berlin, Germany

Phone: +49 30 3512 1066
Fax: +49 30 3036 4941

Email: {andreas.junghanns,jakob.mauss,
mugur.tatar}@qtronic.de

This paper presents and exemplifies a novel methodology to perform simulation-based automated
testing for verification of complex chassis-control systems. The methods are derived from
computer-game principles and regard the system under test as an opponent that is defeated when
the specification is violated. The methodology is demonstrated on an auto-coding implementation
of a brake-blending function for a heavy vehicle, in combination with a simulation model
implemented in Modelica. It is shown that a vast number of scenarios can be analyzed with
moderate manual effort, and that results corresponding to high-coverage FMEA / FTA analysis
can be produced to verify system safety and robust performance.

Vehicle Control, Vehicle Dynamics, Modeling and Simulation Technology

1. INTRODUCTION

New chassis control functions add to the safety and
comfort of road vehicles and provide the customers with
great value. However, the complexity of the heterogeneous
and distributed total control system that is the result of
many control functions that operates in parallel and share
sensors and actuators is continuously increasing. Methods
are needed to cope with this complexity to guarantee safe
and reliable performance at a reasonable cost.

Traditional control-design methods focus on robust
performance and stability in terms of model uncertainty and
disturbances in closed-loop systems. For the complex
aggregate of vehicle control functions, the traditional
methods can only be applicable on subsets of the total
system, and must be combined with other methods in order
to analyze global robust and safe performance with respect
to the system design and possible faults. The complete
system is of such complexity that formal proof-based
verification of the design is practically impossible. Instead,
the system must be subjected to verification testing with a
sufficient coverage to yield confidence in safety and
availability. Likewise, the analysis of system performance
under possible fault scenarios must be analyzed by testing
rather than proof.

The verification testing involves the analysis of a vast
number of scenarios selected in a systematic way. This
work is commonly done manually to a large extent in
design revisions, hardware-in-the-loop (HIL) rigs, and

prototype testing. The manual involvement is time-
consuming and limits the number of cases that can be
investigated and tested, and the verification process is also
very costly. There are great improvements in efficiency and
coverage to be gained from further automating these
procedures. The human intervention is also a source of
error that may be reduced by automation. Another issue is
that verification testing usually is applied at later phases in
the design process, and problems that are identified in these
tests may require large and expensive steps back.
Verification testing based on models or software may be
applied at earlier phases and problems may thus be
identified earlier.

The combination of a tool that automatically produces
relevant test cases by intelligent search in the configuration
space and model-in-the-loop (MIL) or software-in-the-loop
(SIL) simulation is demonstrated in this paper. In Section 2,
the tool and method for automated testing is described.
Section 3 describes a brake-blending function implemented
for auto-coding that is subject for verification testing.
Section 4 describes the vehicle and environment simulation
model. In Section 5, the tool used here to setup and perform
MIL/SIL simulations is described. Section 6 presents and
summarizes the results, and conclusions are given in
Section 7.

1

Presented at: 9th International Symposium on Advanced Vehicle Control (AVEC2008), Kobe, Japan, 6. - 9.10.2008

2. THE AUTOMATED TEST ENVIRONMENT

Complex vehicle systems, like the one described in this
paper, are difficult to test and validate. Traditional methods
based on hand-written test scripts do not scale anymore
with increasing system complexity. TestWeaver is a tool
that implements a novel method for the automated
generation and evaluation of tests for complex dynamic
systems.

The overall design objectives for TestWeaver were to:

1. dramatically increase the test coverage, with respect to
system behavior, while

2. keeping the workload for the test engineer low.

Figure 1. The test environment.

TestWeaver can autonomously generate and evaluate
thousands of qualitatively differing simulation runs, see
Figure 1. No handwritten test scripts are needed for that.
The interaction with the simulated system under test is done
via a typically small set of instrumentation components that
are placed in the simulation model. These instruments
allow TestWeaver to remotely control the system's input
signals and parameters and to monitor selected state
variables. Instrumentation libraries exist for Simulink,
Modelica, C and for Silver co-simulations. The
instrumentation is system-dependent, but the search
algorithms implemented by TestWeaver are generic. Part of
the instrumentation can monitor system safety and quality
conditions and can report alarms to TestWeaver when
certain safety requirements or specification are violated, or
are nearly so.

TestWeaver systematically generates thousands of
differing simulation scenarios. For this purpose TestWeaver
analyses the results of the past simulations in order to
intelligently (a) search for violations of specifications and
to (b) maximize the test coverage. Test coverage is defined
as follows: the domain of each variable controlled or
monitored by a TestWeaver instrument is partionend into a
small set of intervals by that instrument. This way, the
instruments of a model define an n-dimensional discrete
(i.e. finite) state space. The coverage goal of TestWeaver is
to reach every reachable discrete state in that space at least

once, see Figure 2.

Figure 2 Scenarios generated by TestWeaver.

All recorded simulation runs can be “replayed” for
detailed analysis and debugging.

To provide intuitive feedback to the user about critical
scenarios found and what portion of the search space was
covered, TestWeaver contains a sophisticated, customizable
reporter component. This allows the user to focus on a few
potentially interesting scenarios, instead of shifting through
thousands or even tens of thousands of mostly uninteresting
simulation runs.

3. VEHICLE FUNCTION – BRAKE BLENDING

The large mass of heavy-vehicle combinations such as
tractors with semi-trailers implies that large braking power
is required for retardation. This leads to a risk for very high
temperatures in the service brakes as well as unnecessary
disk and pad wear. Normal engine braking is unable to
provide sufficient retardation torque to support the service
brakes. Therefore, heavy vehicles are often equipped with
auxiliary brakes such as retarders and special engine brakes
(e.g. exhaust brakes).

These retarders can be controlled manually or
automatically with brake blending. Brake blending is a
feature where the service brakes and auxiliary brakes are
seamlessly blended in such a way that the service brakes
are relieved while the actual retardation corresponds to the
driver brake pedal requests. The function shall not be
noticeable for the driver, i.e. when the driver presses the
deceleration pedal, the deceleration response of the vehicle
shall be identical whether brake blending is active or not.

The brake blending system consists of a reference
generator for the brake forces, a coordinator for all the
brake systems, a retarder torque controller and a brake
torque controller. See further the control scheme in Figure
3. The function is implemented in Simulink/Targetlink for
automatic generation of production code.

The brake blending function is in an early development
phase and this is the first safety and robustness assessment.
Not all needed countermeasures are implemented yet. The
function is, however, auto-coded and integrated in an ECU.
It is tested in prototypes as well as in simulations.

2

p_trailer
4

T_brakes
3

T _ret
2

T _eng
1

Service Brake
Torque Controller

F_brakes

T_brakes

p_trailer

Brake Force
Reference Generator

pos F

Brake Force
Coordinator

F

F_aux

F_brakes

Auxiliary Brake
Torque Controller

F_aux

T_eng

T_ret

pos
1

Figure 3. Schematic control diagram for Brake Blending. Only the main control flow is shown.

The brake pedal position, pos, is interpreted as a brake
force, F, on the whole combination by the Brake Force
Reference Generator. The Brake Force Coordinator
distributes (the actual blending) the force between the
different types of actuators, F_aux to the auxiliary brakes
and F_brakes to the service brakes. The Auxiliary Brake
Torque Controller controls the engine torque, T_eng, and
the retarder torque, T_ret while the Service Brake Torque
Controller controls the service brake torques, T_brakes and
the trailer pressure, p_trailer.

The engine retarder is only possible co control in a
number of fixed steps and the achieved torque has great
engine speed dependency. The dynamics vary heavily with
engine speed, and the resulting braking torque on the
wheels also depends on the engaged transmission gear. The
driveline retarder can be controlled continuously, and its
dynamics vary with the prop shaft speed. To have a smooth
control of the retardation, the brake blending function must
include compensations for these aspects.

However, as the brake blending function prioritizes
auxiliary brakes and the auxiliary brakes are braking only
the drive axle, there is a risk for excessive slip on that axle,
and thus reduced vehicle stability as a consequence. As a
means for avoiding that, a slip control for the rear axle is
needed. If the rear axle has too high slip, brake force is
moved to the front axle. Therefore, brake blending is a
relatively complex function.

Now, to make sure that the brake blending function is
safe and robust, two studies are made in TestWeaver:
• A fault injection and
• A parameter variation robustness study

The analysis is made on a system configured for a
vehicle with a compression and exhaust retarder as a part of
the engine and a hydrodynamic driveline retarder mounted
between the gear box and the final gear. In this study the
analysis is limited to a single tractor, without trailer

Hazards
Hazard identification and classification is an important

and difficult task. As a lot of proprietary knowledge about a
function is documented in this classification, only a small
portion of the hazard list can be published here. To give an
example of what is possible with the tool chain presented

here, we just give one example of one type of hazards,
namely retardation deviations.

Function Hazard Identification and Classification – Brake Blending

ID Description Expression C
on

tr
ol

la
bi

lit
y

Se
ve

rit
y

R
is

k

SIL
BB_H_004 The retardation is slightly lower than intended for a long time. delta_r < -0.5 m/s2

time > 1 s
BB_H_005 The retardation is lower than intended for a long time. delta_r < -1.0 m/s2

time > 1 s
BB_H_006 The retardation is much lower than intended for a long time. delta_r < -2.0 m/s2

time > 1 s
BB_H_007 The retardation is slightly higher than intended for a long time. delta_r > 0.5 m/s2

time > 1 s
BB_H_008 The retardation is higher than intended for a long time. delta_r > 1.0 m/s2

time > 1 s
BB_H_009 The retardation is much higher than intended for a long time. delta_r > 2.0 m/s2

time > 1 s

Signals and Parameters
Inputs and parameter values are partitioned into

intervals that are classified as nominal, tolerance
deviations, or faults. The faults injected in this study are
described as offset or gain variations on signals in the
function interface. See examples in the tables below.

Interface Signals
Name Unit Scaling
Vehicle to Control Function
Engine Retarder Actual Torque Nm [0, 0.5, 1, 1.5, 2]
Driveline Retarder Actual Torque Nm [0, 0.5, 1, 1.5, 2]
Vehicle Wheel Angular Velocities (x4) rad/s [0, 0.5, 1, 1.5, 2]
Engine Speed rad/s [0.5, 1, 1.5]
Rear Axle Wheight (air spring pressure sensors) kg [0, 0.5, 1, 1.5, 2]
Vehicle Longitudinal Acceleration m/s2 [0, 0.5, 1, 1.5, 2]
Control Function to Vehicle
Brake Clamp Forces (x4) N [0, 0.5, 1, 1.5, 2]
Engine Retarder Requested Torque Nm [0, 0.5, 1, 1.5, 2]
Driveline Retarder Requested Torque Nm [0, 0.5, 1, 1.5, 2]
Engine Retarder Torque Mode (valid request) - [0 1]
Driveline Retarder Torque Mode (valid request) - [0 1]

Internal Vehicle Signals
Name Unit Scaling
Engine Retarder Actuated Torque Nm [0, 0.5, 1, 1.5, 2]
Driveline Retarder Actuated Torque Nm [0, 0.5, 1, 1.5, 2]

Parameters
Name Unit Scaling
Front Tire Longitudinal and Cornering Stiffness N [0.5, 1, 1.5, 2]
Rear Tire Longitudinal and Cornering Stiffness N [0.5, 1, 1.5, 2]
Wheel Base m [0.5, 1, 1.5]
Front Axle Load kg [0.5, 1, 1.5]

3

Test Scenario
The test consists of a driver that brakes and steers the

vehicle. Gear shifting is made automatically. The Driver
can give inputs according to the table below.

Drivers
Name Unit Values
Brake Pedal Position (0 to 1) - [0, 0.15, 0.3, 0.45]
Steering Wheel Angle rad [0, 0.5]

4. VEHICLE MODEL

To test and verify the brake-blending function it is
necessary to simulate its operating environment including
the tractor towing-vehicle, a driver, and the road. This
environment must produce realistic responses to the control
actions computed by the function. For this purpose a model
is built using the Modelica-based tools Dymola and
Vehicle Dynamics Library , and . Modelica is an open-
specification high-level object-oriented and component-
based language designed for multi-domain modeling for
simulation of complex systems. Modelica is designed for
acausal and equation based modeling, which makes the
models highly readable and reusable. An outstanding
feature of Modelica-based solutions in the context of
verification testing is the exposed and modifiable model
source code in combination with the high-level model
descriptions. It is possible to view and modify or extend the
implementation of component and system models. In this
way instruments can be added to the vehicle model, such as
sensor instruments for criteria evaluation, and instruments
for input excitation and parameter variations to describe
operating conditions, tolerance variations, and fault

injection. Figure 5 shows the tractor model and the main
powertrain, brakes, and chassis subsystems, and the
instruments used by TestWeaver. The powertrain model
includes a gearbox, engine retarder, driveline retarder, and
driveline with final gear and differential. The brake
subsystem includes components for service disk-brakes
with ABS. The chassis contains front and rear axles, with
steering, cabin, frame, and wheels. The vehicle runs on an
infinite plane with configurable inclination and surface
friction. The model contains about seven thousand
equations and 63 continuous states. It is translated into C-
code using the Dymola inline trapezoid integration feature
for generation of efficient real-time simulation code. It is
then compiled and linked into a DLL to be used with Silver
and TestWeaver. The final model simulates in about
realtime with 5ms time steps on a standard pc. Figure 4
shows the tractor in a heavy braking maneuver.

Figure 4. Animation screenshot of a heavy braking
maneuver.

vehicle

chassis

brakespowertrain

Figure 5. Vehicle model with powertrain, brakes, and chassis subsystems and TestWeaver instruments.

4

5. VIRTUAL VEHICLE INTEGRATION

For a precise and flexible simulation of system-
level behavior we chose a virtual integration platform
based on Software-in-the-Loop (SIL). The vehicle
software functions and the simulation of the vehicle
dynamics can be integrated by co-simulation on
standard PCs. The simulation is fast due to the use of
compiled modules (DLLs) for the (i) vehicle functions,
exported with RealTime Workshop from Simulink, and
for the (ii) vehicle dynamics simulation, exported from
Modelica / Dymola. As integration tool Silver was used
here. In addition to the basic integration functionality
already mentioned, Silver offers the possibility to
parameterize the virtual system using the same
standardized interfaces and data exchange formats as
those used in cars, e.g. ASAP2 (A2L), XCP/CCP, DCM
(ETAS), MDF (Vector). For calibration tools, such as
Inka (ETAS) or Canape (Vector) the Silver simulation
behaves like an ECU. Further tools are provided for
controlling, visualizing, recording and debugging
simulation runs in Silver, as well as a direct interface to
the automatic test generation and evaluation tool used
here: TestWeaver. Figure 6 depicts the virtual
integration architecture used here.

Figure 6. The virtual vehicle integration architecture.

Instrumentation
Based on the results of the hazard analysis

described in Section 3, the instrumentation of the virtual
vehicle simulation was done. The instrumentation
included 43 instruments: one alarm for hazard
monitoring, i.e. the retardation deviation, 2 inputs for
the brake pedal and for the steering angle, 8 parameters
in the vehicle dynamics model for robustness studies
and 33 faults for the events surrounding the brake-
blending function, as described before.

6. RESULTS

Using the instrumentation and the vehicle simulation
TestWeaver generates many differing simulation runs
and can build, with the help of the reporting
functionality, an abstract view of the qualitative
behavior of the vehicle. It is then possible to find out
which faults result in safety critical alarms, and under
which conditions in terms of parameter settings and
input sequences. Moreover, it also possible to analyze
different aspects of coverage, in terms of input and
parameter space coverage, fault coverage or system
state coverage – of course, only with respect to the
discretized system space abstraction provided by the
instruments.

When a fault is detected, the corresponding
scenario can be replayed using the Silver environment
to view details in the system response, see Figure 7.

With the control algorithm, simulation environment
and game-inspired testing algorithms, the potential
hazard causes have been investigated and some
previously unforeseen system weaknesses have been
revealed. One major result is that critical signals and
code portions are effectively identified. Thus, this
primary testing result points out the countermeasures
needed. Countermeasures are then implemented in the
form of plausibility checks for the critical input signals
and safety monitors for critical code portions. With the
countermeasures implemented, succeeding test runs are
made in order to verify that the countermeasures are
effective.

Figure 7. Example of result from fault injection. The
engine speed signal is for this fault injection half of the

true engine speed.

The presented tool chain can be used to support
safety analysis such as FMEA / FTA as well as
robustness and availability studies.

Safety Analysis
For the safety analysis, the fault injections are made

on the interface signals only. The vehicle function is
assumed to be monitored for code and numerical errors.
In order to be able to study a reasonably big search
space at the interface signals are discretized to certain
gain values, as shown in section 3.

A hazard analysis has been used here to derive the

5

- Vehicle Acceleration- Target Acceleration

monitored safety hazards and the possible faults that
could be related to them. The tool chain helped to
analyze, in detail, the cause-effect relationship, an
otherwise extremely difficult enterprise, if possible at
all, considering the complexity and the amount of
software functions involved. Of course, the simulation
results need to be evaluated and complemented by the
analysis of experienced engineers. As a second step, the
tool chain presented here can be used to verify that the
countermeasures designed to improve system safety are
successful.

Figure 8 shows a piece of a coverage report
generated by TestWeaver, for analysis of the single fault
events.

inserted faults BrkPdlPosCmd_Sh speed
no_brake (10..20)
little_brake (0..10)
some_brake (0..10)

(0..10)
(10..20)
(0..10)
(10..20)
(0..10)
(10..20)
(0..10)
(10..20)
(0..10)
(10..20)

… … …
(0..10)
(10..20)
(0..10)
(10..20)
(0..10)
(10..20)
(0..10)
(10..20)

DrvRetrdAct_Tq_gain=omission

much_brake

EngRetrdAct_Tq_gain=omission no_brake

little_brake

some_brake

much_brake

driveLineRetarderAxleTorqueShareMode=
omission

no_brake

little_brake

some_brake

much_brake

Figure 8. Subset of inserted faults (3 out of 33).

Most of the entire cross product of inserted faults,
brake pedal positions and speeds are evaluated - only a
few speed combinations are missing. The speed is not
directly controlled, but a consequence of the brake pedal
position.

Robustness Study
For the robustness study, the effect of combined

variations of vehicle parameters, road conditions, and
driver input sequence are investigated. The search space
is then of course enormous and it is implausible that
completeness can be achieved. Nevertheless, the major
result is that often critical signals and parameters can be
effectively identified. Thus, also this kind of study can
reveal existing risks or robustness weaknesses, that need
to be handled.

The robustness analysis covered 8324 states in
1585 scenarios, and reported 6 alarms, see Figure 9. For
each alarm it is possible to see what scenarios and input
sequences that leads to the undesired state. The report
gives all necessary information to judge the criticality of
the condition. This is a great help to find and understand
possible weaknesses and their remedies.

speed acceleration_error faults max
duration scen

high (none) 0.74 s900
low (none) 3.16 s956
high (none) 0.61 s870
low (none) 2.84 s866
high (none) 0.01 s793
low (none) 0.42 s1021

(10..20)

(20..30)

(0..10)

Figure 9. Example of alarm report for the robustness
study.

7. CONCLUSIONS

For safety critical systems it is important to prove
that the still existing risks are tolerable. Understanding
and assessing software is difficult. The presented
method can help increase the confidence in the system
safety and helps the engineers to better understand the
complex behavior of systems that include complex
software. Our method complements the existing safety
analysis and function validation methods with detailed
and comprehensive analysis based on simulation.

The presented testing method reveals the safety
critical signals and system portions in a very effective
way and at an early stage. Required countermeasures in
the form of plausibility checks and safety monitors are
identified. The verification of the implemented
countermeasures can be performed with succeeding
tests.

8. ACKNOWLEDGEMENTS

Haldex Commercial Vehicle Systems division
develops, manufactures and markets brake systems for
heavy trucks, trailers and buses. The product offering
includes all main components and subsystems included
in a complete brake system.

The Brake Blending function is developed for
Haldex. Haldex is gratefully acknowledged for letting
us publish this study.

REFERENCES

[1] Philipson, N., Andreasson, J., Gäfvert, M.,
Woodruff, A.: Heavy Vehicle Modeling with the
Vehicle Dynamics Library, Proc. 6th International
Modelica Conference, Bielefeld, Germany, 2008.

[2] Anreasson J., Gäfvert, M.: The Vehicle Dynamics
Library – Overview and Applications, Proc. 5th

International Modelica Conference, Vienna,
Austria, 2006.

[3] https://www.dynasim.se
[4] https://www.modelon.se
[5] https://www.modelica.org
[6] http://www.qtronic.de/en/silver.html
[7] Junghanns, A., Mauss, J., Tatar M.: TestWeaver: A

Tool for Simulation-based Test of Mechatronic
Designs, Proceedings of the 6th International
Modelica Conference, March 3rd - 4th 2008,
Bielefeld, Germany

6

	1. INTRODUCTION
	2. The Automated Test Environment
	3. Vehicle Function – Brake Blending
	Hazards
	Signals and Parameters
	Test Scenario

	4. Vehicle Model
	5. Virtual Vehicle Integration
	Instrumentation

	6. Results
	Safety Analysis
	Robustness Study

	7. Conclusions
	8. Acknowledgements
	References

